net.sourceforge.cilib.neuralnetwork.foundation
Class EvaluationMediator
java.lang.Object
net.sourceforge.cilib.algorithm.Algorithm
net.sourceforge.cilib.algorithm.SingularAlgorithm
net.sourceforge.cilib.neuralnetwork.foundation.EvaluationMediator
- All Implemented Interfaces:
- Serializable, Runnable, Cloneable
- Direct Known Subclasses:
- FFNNEvaluationMediator, SAILAEvaluationMediator
public class EvaluationMediator
- extends SingularAlgorithm
- Author:
- stefanv
- See Also:
- Serialized Form
Methods inherited from class net.sourceforge.cilib.algorithm.Algorithm |
addAlgorithmListener, addStoppingCondition, get, getAlgorithmList, getIterations, getOptimisationProblem, getPercentageComplete, getStoppingConditions, initialise, isFinished, performIteration, performUninitialisation, removeAlgorithmListener, removeStoppingCondition, reset, run, setOptimisationProblem, terminate |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
prototypeError
protected NNError[] prototypeError
errorDg
protected NNError[] errorDg
errorDt
protected NNError[] errorDt
errorDv
protected NNError[] errorDv
nrEvaluationsPerEpoch
protected int nrEvaluationsPerEpoch
topology
protected NeuralNetworkTopology topology
data
protected NeuralNetworkData data
trainer
protected TrainingStrategy trainer
totalEvaluations
protected int totalEvaluations
EvaluationMediator
public EvaluationMediator()
performInitialisation
public void performInitialisation()
- Description copied from class:
Algorithm
- Perform the needed initialisation required before the execution of the algorithm
starts.
- Overrides:
performInitialisation
in class Algorithm
algorithmIteration
public void algorithmIteration()
- Description copied from class:
SingularAlgorithm
- The actual operations that the current Algorithm performs within a single
iteration.
- Specified by:
algorithmIteration
in class SingularAlgorithm
computeErrorIteration
public void computeErrorIteration(NNError[] err,
TypeList output,
NNPattern input)
evaluate
public TypeList evaluate(NNPattern p)
getErrorDg
public NNError[] getErrorDg()
getErrorDt
public NNError[] getErrorDt()
getErrorDv
public NNError[] getErrorDv()
getNrEvaluationsPerEpoch
public int getNrEvaluationsPerEpoch()
getTopology
public NeuralNetworkTopology getTopology()
getTotalEvaluations
public int getTotalEvaluations()
performLearning
public void performLearning()
finaliseErrors
public void finaliseErrors(NNError[] err)
resetError
public void resetError(NNError[] err)
setErrorDg
public void setErrorDg(NNError[] errorDg)
setErrorDt
public void setErrorDt(NNError[] errorDt)
setErrorDv
public void setErrorDv(NNError[] errorDv)
setErrorNoOutputs
public void setErrorNoOutputs(NNError[] err,
int nr)
setErrorNoPatterns
public void setErrorNoPatterns(NNError[] err,
int nr)
setTopology
public void setTopology(NeuralNetworkTopology topology)
getPrototypeError
public NNError[] getPrototypeError()
addPrototypError
public void addPrototypError(NNError proto)
getData
public NeuralNetworkData getData()
setData
public void setData(NeuralNetworkData data)
getTrainer
public TrainingStrategy getTrainer()
setTrainer
public void setTrainer(TrainingStrategy trainer)
getEpochStrategy
public EpochStrategy getEpochStrategy()
setEpochStrategy
public void setEpochStrategy(EpochStrategy epochStrategy)
getBestSolution
public OptimisationSolution getBestSolution()
- Description copied from class:
Algorithm
- Get the best current solution. This best solution is determined from the personal bests of the
particles.
- Specified by:
getBestSolution
in class Algorithm
- Returns:
- The
OptimisationSolution
representing the best solution.
getClone
public Algorithm getClone()
- Description copied from class:
Algorithm
- Create a cloned copy of the current object and return it. In general
the created copy will be a deep copy of the provided instance. As
a result this operation an be quite expensive if used incorrectly.
- Specified by:
getClone
in interface Cloneable
- Specified by:
getClone
in class Algorithm
- Returns:
- An exact clone of the current object instance.
- See Also:
Object.clone()
getSolutions
public List<OptimisationSolution> getSolutions()
- Description copied from class:
Algorithm
- Get the collection of best solutions. This result does not actually make sense in the normal
PSO algorithm, but rather in a MultiObjective optimization.
- Specified by:
getSolutions
in class Algorithm
- Returns:
- The
Collection<OptimisationSolution>
containing the solutions.
incrementEvaluationsPerEpoch
public void incrementEvaluationsPerEpoch()
Copyright © 2009 CIRG. All Rights Reserved.